Недавно просмотренные:





Главная -> Скачать курсовые -> Статистика -> Статистика

Статистика

Содержание

. Понятие о статистическом наблюдении и его организация. Объект наблюдения, единица наблюдения, единица учета. Программа наблюде-ния.

Статистическое наблюдение - это начальный этап любого статистического исследования, поэтому от того, насколько полными и качественными окажутся собранные первичные данные, зависят в значительной степени и конечные результаты исследований. В статистической практике используются разные формы, виды и способы наблюдения.

Различают 3 формы организации наблюдения:

1. Статистическая отчетность – это особая форма организации сбора данных государственной статистикой о деятельности хозяйствующих субъектов, которые обязаны заполнять документы-бланки, называемые формами статистической отчетности, содержащие перечень определенных показателей, сведений, характеризующих ту или иную хозяйственную единицу и результаты ее деятельности, заполняемый на основе данных оперативного или бухгалтерского учета и представляемые в государственные статистические органы для дальнейшего обобщения. Каждая форма отчетности имеет шифр и название. В соответствии со сроками представления отчетность бывает суточная (ежедневная), недельная, месячная, квартальная, полугодовая и годовая. Все эти виды отчетности, кроме годовой, объединяют одним названием – текущая отчетность.

2. Cпециально организованные статистические наблюдения- это переписи и специальные обследования, проводимые по тем явлениям общественной жизни, по которым отсутствует отчетность или когда требуется уточнить, дополнить данные той или иной отчетности, либо провести разовое детальное, всестороннее обследование каких-либо объектов

3. Наблюдение через регистры – сравнительно новая форма организации статистического наблюдения, основанная на применении компьютерных технологий. Регистр – это поименованный и постоянно уточняемый перечень тех или иных единиц наблюдения, созданный для непрерывного длительного статистического наблюдения за определенной совокупностью, в котором содержится информация о каждой единице совокупности.

Все эти три организационные формы статистического наблюдения не противостоят, а дополняют друг друга, позволяя более глубоко и всесторонне изучать отдельные явления и процессы общественной жизни.

Выдержки из текста

12. Средняя величина, ее сущность и значение. Связь метода средних величин с методом группировок.

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности. Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности. Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности

Общие принципы применения средних величин:

- необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя величина;

- при определении средней величины нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь исследуемых признаков, а также имеющиеся для расчета данные;

- средние величины должны рассчитываться по качественно однородным совокупностям, которые получают методом группировок, предполагающим расчёт системы обобщающих показателей;

- общие средние должны подкрепляться групповыми средними.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних:

1) степенные средние (средняя арифметическая, гармоническая, геометрическая, средняя квадратическая и кубическая);

2) структурные (непараметрические) средние (мода и медиана).

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаются теорией средних.

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Формулы расчёта средних величин представлены в таблице 1.

Таблица 1 – Формулы расчёта средних величин

Виды средних величин Формулы расчёта

простая взвешенная

1. Средняя арифметическая

2. Средняя гармоническая

3. Средняя геометрическая

4. Средняя квадратическая

Обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Очевидно, что различные средние выводятся из общей формулы степенной средней

при k = + 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = +2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называются величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность; в связи с этим каждый вариант приходится умножать на эту численность. «Весами» при этом выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней.

В итоге правильный выбор средней величины предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

Средняя арифметическая – самый распространенный вид средней величины; она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Важнейшие свойства средней арифметической:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант (отдельных значений) на частоты.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число.

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то новая средняя увеличится (уменьшится) во столько же раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частностями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину. Этот способ расчета средней арифметической называется способом расчета от условного нуля.

Средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000).

Средняя квадратическая применяется для измерения вариации признака в совокупности (расчета среднего квадратического отклонения).

В статистике действует правило мажорантности средних:

Х гарм. < Х геом. < Х арифм. < Х квадр. < Х куб.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду

Мода — наиболее типичное, чаще всего встречаемое значение признака. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой.

Чтобы найти конкретное значение моды интервального ряда, необходимо использовать формулу

где ХМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

Медиана — значение варьирующего признака, приходящееся на середину ранжированной совокупности. Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 6, 7, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. четвёртая величина - 6. Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10)/2= 8,5.

Таким ообразом, для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формулам:

(если частот нет)

N Me = (если частоты есть) (3.3)

где n - число единиц в совокупности.

Численное значение медианы интервального ряда определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений.

Численное значение медианы обычно определяют по формуле:

где xМе - нижняя граница медианного интервала; iМе - величина интервала; SМе-1 - накопленная частота интервала, которая предшествует медианному; fМе - частота медианного интервала.

Внутри найденного интервала расчет медианы производится также по формуле Ме = xlе, где второй множитель в правой части равенства показывает расположение медианы внутри медианного интервала, а х — длина этого интервала. Медиана делит вариационный ряд пополам по частотам. Определяют еще квартили, которые делят вариационный ряд на 4 равновеликие по вероятности части, и децили, делящие ряд на 10 равновеликих частей.

Один из наиболее распространенных методов изучения связей - метод группировок в сочетании с методом средних. Этот метод позволяет установить наличие связи, определить направление связи, приближенно измерить тесноту связи.

Методика применения группировок в сочетании со средними при изучении связей заключается в следующем:

1) проводят группировку изучаемой совокупности по величине факторного признака;

2) рассчитывают

Литература

1. Балдин, К.В. Общая теория статистики: Учебное пособие / К.В. Балдин, А.В. Рукосуев. - М.: Дашков и К, 2012. - 312 c.

2. Батракова, Л.Г. Теория статистики: Учебное пособие / Л.Г. Батракова. - М.: КноРус, 2013. - 528 c.

3. Громыко, Г.Л. Теория статистики: Практикум / Г.Л. Громыко. - М.: НИЦ ИНФРА-М, 2013. - 238 c.

4. Годин, А.М. Статистика: учебник / А.М. Годин. - Москва: Дашков и К°, 2012. - 451 с.

5. Гореева, Н.М. Статистика в схемах и таблицах / - Москва: Эксмо, 2015. - 414 с.

6. Гусаров, В.М., Кузнецова, Е.И. Статистика. 2-е издание / В.М. Гусаров, Е.И. Кузнецова. - М.: ЮНИТИ-ДАНА, 2014. - 347 с.

7. Громыко, Г.Л. Теория статистики: практикум / Г.Л. Громыко. 3-е изд., доп. и перераб. - М.: Инфра-М, 2015. - 347 с.

8.Елисеева, И.И. Статистика: [углубленный курс]: учебник для бакалавров / И.И. Елисеева и др.]. - Москва: Юрайт: ИД Юрайт, 2013. - 565 с.

9.Ефимова, М.Р. Общая теория статистики: Учебник / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцев. - М.: ИНФРА-М, 2013. - 416 c.

10. Зинченко, А.П. Статистика: учебник / А.П. Зинченко. - Москва: КолосС, 2014. - 566 с.

11.Лысенко, С.Н. Общая теория статистики: Учебное пособие / С.Н. Лысенко, И.А. Дмитриева. - М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2013. - 208 c.

12. Яковлева, А.В. Экономическая статистика: Учебное пособие / А.В. Яковлева. - М.: ИЦ РИОР, 2013. - 95 c.

О работе

Автор: . Показать все работы автора

19479

Цена: 600 рублей.

Дисциплина: «Статистика»

Тема: «Статистика»

Тип: «Контрольная работа»

Объем: 25* страниц

Год: 2018

Скачать контрольную

Пароль на скачивание файла (получить пароль):

Укажите результаты вычисления:
7 - 4 =

Продажи полностью автоматические. Пароль выдается сразу после завершения процедуры покупки. Для получения пароля на контрольную «Статистика» произведите оплату.
Внимание!!! Работы могут не соответствовать требованиям к оформлению какого-либо конкретного учебного заведения.
Для получения полноценной курсовой или реферата с вашими требованиями сделайте заказ новой работы.

По всем вопросам обращайтесь по почте procom@mail.ru.

Выберите удобный для Вас способ оплаты

Похожие работы:

 

Комментарии:

Текст сообщения:

Ваше имя:

Ваш e-mail:

Укажите результаты вычисления:

0 + 8 =

Статистика - Контрольная работа
Number of Queries: 18, Parse Time: 0.16960597038269, 2018-06-15 05:37:54
www.webmoney.ru